

Finite output resistance in saturation

Kizito NKURIKIYEYEZU,

Finite output resistance in saturation

- In previous lectures, we assume (in saturation) iD is independent of v_{DS}.
- Therefore, a change in v_{DS} has no effect on i_D.
 - This implies that the incremental resistance *R_S* is infinite
 - It is based on the idealization that, once the n-channel is pinched off, changes in v_{DS} will have no effect on i_D.
 - The problem is that, in practice, this is not completely true.
- In reality, the drift current increases, and i_D increases with increasing v_{DS}

Quick review

The equation used to define iD depends on relationship between v_{DS} and v_{OV} :

• When $v_{DS} \ll v_{OV}$ (i.e., the small v_{DS} model)

$$i_{D} = \left[\left(\mu_{n} C_{ox} \left(\frac{W}{L} \right) v_{OV} \right) \right] v_{DS}$$
(1)

■ When v_{DS} < v_{OV} (i.e., the large v_{DS} model)

$$\begin{split} I_{D} &= \mu_{n} C_{ox} \left(\frac{W}{L} \right) \left[V_{OV} - \frac{1}{2} v_{DS} \right] v_{DS} \\ &= k_{n}^{\prime} \left(\frac{W}{L} \right) \left[V_{OV} - \frac{1}{2} v_{DS} \right] v_{DS} \end{split} \tag{2}$$

• When $v_{DS} \ge v_{OV}$ (channel pinch-off and current saturation)

$$i_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) \tag{3}$$

■ But what would happen when $v_{DS} \gg v_{OV}$? izito NKURIKIYEYEZU, Ph.D. Finite output resistance in saturation Ju

June 29, 2022 1 / 10

Finite Output Resistance in Saturation

What effect does increasing v_{DS} has on the n-channel once pinch-off has occurred?

- It will cause the pinch-off point to move slightly away from the drain and create new depletion region.
- Voltage across the (now shorter) channel will remain at v_{OV}.
- However, the additional voltage applied at *v*_{DS} will be seen across the "new" depletion region.

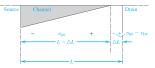
Finite Output Resistance in Saturation

What effect will increased VDS has on n-channel once pinch-off has occurred?

- This voltage accelerates electrons as they reach the drain end, and sweep them across the "new" depletion region.
- However, at the same time, the length of the n-channel will decrease. This is known as channel length modulation.

Finite output resistance in saturation

- When $v_{DS} > V_{OV}^2$, the depletion region around the drain region grows in size.
- With depletion-layer widening, the channel length is in effect reduced, from L to $L - \Delta L$, a phenomenon known as channel-length modulation.


FIG 1. Early Effect—Finite Output Resistance increasing v_{DS} beyond v_{DSsat} causes the channel pinch-off point to move

Kizito NKURIKIYEYEZU, Ph.D. Finite output resistance in saturation June 29, 2022 5 / 10 Finite output resistance in

Kizito NKURIKIYEYEZU, Ph D

Finite output resistance in saturation

- As the channel length becomes shorter, the electric field, which is proportional to vDS/L, becomes larger.
- Since in is inversely proportional to the channel length, in increases with v_{DS} .

FIG 2. Early Effect—Finite Output Resistance

increasing v_{DS} beyond v_{DSsat} causes the channel pinch-off point to move slightly away from the drain; thus, reduces the effective channel lengthy by ΔL

Kizito NKURIKIYEYEZU, Ph.D.	Finite output resistance in saturation	June 29, 2022	

Finite output resistance in saturation

In reality, the drift current increases, and in increases with increasing VDS

$$D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) (v_{GS} - V_{tn})^2 (1 + \lambda u_{GS})^2 (1 + \lambda$$

- \mathbf{I} λ is a device parameter with the units of V^{-1} , the value of which depends on manufacturer's design and manufacturing process. λ is much larger for newer tech's
- The value of λ depends both on Kizito NKURIKIYEYEZU, Ph.D. Finite output resistance in saturation

(4) FIG 3. Early Effect—Finite Output Resistance Effect of v_{DS} on i_D in the saturation region. The MOSFET parameter VA depends on the process

technology and, for a given process, is proportional to the channel length L June 29, 2022

Finite output resistance in saturation

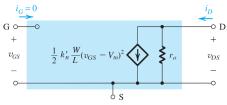
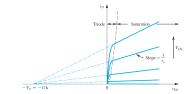



FIG 4. Large-Signal Equivalent Model of the n-channel MOSFET in saturation, incorporating the output resistance r_0 . The output resistance models the linear dependence of I_0 on v_{Os} and is given by Equation (4). Please note the addition of finite output resistance r_0 .

Defining the output resistance

Note that ro is the 1/slope of iD vs VDS curve

FIG 5. Early Effect—Finite Output Resistance

Kizito NKURIKIYEYEZU, Ph.D

Effect of v_{DS} on i_D in the saturation region. The MOSFET parameter VA depends on the process technology and, for a given process, is proportional to the channel length L.

Finite output resistance in saturation

June 29, 2022 9 / 10

Defining the output resistance • Note that r_o is the 1/slope of i_D vs v_{DS} curve $r_o \equiv \left[\frac{\partial i_D}{\partial v_{DS}}\right]^{-1}$ (5) • Combining Equation (4) and Equation (5), we have $\frac{\partial i_D}{\partial v_{DS}} = \frac{\partial}{\partial v_{DS}} \frac{1}{2} k'_n \left(\frac{W}{L}\right) (v_{GS} - V_{in})^2 (1 + \lambda v_{DS})$ (6) $= \frac{1}{2} \mu_n G_{ox} \frac{W}{L} v_{Ox}^2 \lambda$ (6) • Thus, the output resistor is defined as shown in Equation (7)

June 29, 2022